
( LECTURE 3 )

Deterministic Finite Automata (DFA)



Introduction

 Finite automata and regular sets

 Definition of deterministic finite automata

 String  accepted by DFA



Finite Automata and regular sets (languages)

 States and transitions:
Ex: Consider a counter data structure (system):

◦ unsigned integer counter: pc; { initially pc = 0}
◦ operations: inc, dec; 

==> The instantaneous state of the system can be identified by the 
value of the counter. Operations called from outside world will 
cause transitions from states to states and hence change the current 
state of the system.

Problem: how to describe the system :
Mathematical approach: CS = ( S, O, T, s, F) where
S = The set of all possible states = N
O = the set of all possible [types of] operations
T = the response of the system on operations at all possible states. 

(present state, input operation) --> (next state) 



Example of a state machine

T can be defined as follows : T: SxO --> S s.t., for all x in S , 
◦ T(x, inc) = x + 1 and  T(x, dec) = x - 1 ;  { 0 - 1 =def 0 }

 s = 0 is the initial state of the system
 F  S is a set of distinguished states, each called a final state.

(we can use it to, say, determine who can get a prize) 
 Graphical representation of CS:

 Note: The system CS is infinite in the sense that S (the set of all 
possible states)  and Transitions ( the set of  possible transitions) 
are infinite. A system consists of only finitely many states and 
transitions is called a finite-state transition system. The 
mathematical tools used to model finite-state transition system 
are called finite automata.

 examples of state-transition systems: electronic circuits; digital 
watches, cars, elevators, etc.



Deterministic Finite automata (the definition)

 a DFA is a structure M = (Q,S, d,s,F) where
◦ Q is a finite set; elements of S are called  states
◦ S is a finite set called the input alphabet
◦ d:QxS --> Q is the transition function with the intention that if M is in state 

q and receive an input a, then it will move to state d(q,a). 
 e.g;   in CS:    d(3, inc) = 4 and d(3, dec) = 2. 

◦ s in Q is the start state
◦ F is a subset of Q; elements of F are called accept or final states.

 To specify a finite automata, we must give all five parts 
(maybe in some other forms)

 Other possible representations:
◦ [state] transition diagram or [state] transition table 



Example and other representations

Ex 3.1: M1 = (Q,S,d,s,F) where
 Q={0,1,2,3}, S={a,b}, s = 0, F = {3} and d is defined by:

 d(0,a) = 1; d(1,a) = 2; d(2,a) = d(3,a) = 3 and

 d(q,b)=q if q = {0,1,2,3}. 

 problem: Although precise but tedious and not easy to understand 
(the behavior of)  the machine.

 Represent M1 by  a table: =====>

 Represent M1 by a diagram:

a b
>0 1 0
1 2 1
2 3 2

3F 3 3
0 1 2 3a a a
b b b a,b

state-transition diagram for M1
note: the naming of states is not necessary



Strings accepted by DFAs

 Operations of M1 on the input 'baabbaab': 

   a a a
b b b a ,b

· b  · a  · a  · b  · b  · a  · a  · b  ·  inpu t s tring

• Since M1 can reach a final state  (3) after scanning all input 
symbols starting from initial state, we say the string
'baabbaab' is accepted by M1.

Problem: How to formally define the set of all strings
accepted by a DFA ? 

M1

0  b 0  a 1  a  2  b 2  b 2  a 3  a  3  b 3 -- execution path



The extended transition function D

 Meaning of the transition function:
q1 -- a --> q2  [or d(q1,a) = q2 ] means  

if M is in state q1 and the currently scanned symbol (of the 
input strings is a) then
◦ 1. Move right one position on the input string (or remove the currently 

scanned input symbol)
◦ 2. go to state q2. [So M will be in state q2 after using up a) 

 Now we extend d to a new function D: Q x S* --> Q with the 
intention that : D(q1,x) =q2   iff
starting from q1, after using up x the machine will be in state q2.  --- D is a 

multi-step version of d.

Problem: Given a machine M, how to define D [according to d] ? 
Note: when string x is a symbol (i.e., |x| = 1) then D(q,x) = 
d(q,x).
for all state q, so we say D is an extension of d. 



The extended transition function D (cont'd)

 D can be defined by induction on |x|  as follows:
◦ Basis: |x|= 0 (i.e., x = e) ==> D(q, e) = q   --- (3.1)

◦ Inductive step: (assume D(q,x) has been defined ) then

◦ D(q, xa) = d(D(q,x), a)   --- (3.2)

◦ --- To reach the state D(q,xa) from q by using up xa, first use up x 
(and reach D(q,x)) and then go to d((D,qx),a) by using up a. 

 Exercise: Show as expected that D(q,a) = d(q,a) for all a in 
S.

pf: D(q,a) = D(q,ea) = d(D(q,e),a) = d(q,a).



Uniqueness of the extended transition funciton 

 Note: D is uniquely defined by M, i.e., for every DFA M, there is 
exactly one function f:QxS* --> Q satisfying property (3.1) and (3.2.)  
◦ --- a direct result of the theorem of recursive definition.

pf: Assume $ distinct f1 and f2 satisfy (3.1&3.2). 
Now let x be any string with least length s.t. f1(q,x)  f2(q,x) 
for some state q.
==> 1. x  e(why ?)

2. If x = ya ==> by minimum of |x|, f1(q,y) = f2(q,y), hence
f1(q,ya)=d(f1(q,y),a) = d(f2(q,y),a) = f2(q,ya), a contradiction. 

Hence f1 = f2. 



Languages accepted by DFAs

 M = (Q,S,d,s,F) : a DFA; x: any string over S;
D: the extended transition function of M. 

1.  x is said to be accepted by M if D(s,x)  F
x is said to be rejected by M if D(s,x)  F.

2. The set (or language) accepted by M, denoted L(M), is the set of all 
strings accepted by M. i.e.,
◦ L(M) =def  {x  S* | D(s,x)  F }.

3. A subset A * (i.e., a language over S) is said to be regular if A is 
accepted by some finite automaton (i.e., A = L(M) for some DFA M).

Ex: The language accepted by the machine of Ex3.1 is the set   
L(M1) = {x {a,b}* | x contains at least three a's} 



Another  example

Ex 3.2:  Let A = {xaaay | x,y ∈ {a,b}*} 
= {x {a,b}* | x contains  substring aaa }. 

Then baabaaaab A and babbabab  A.
An Automaton accept A: (diagram form)

Table form: 
| a    b

----------------------------
>0   | 1    0
1   | 2    0
2   | 3    0
3F | 3    3

a a a

b

b

b a,b



More on regular sets (Lecture 4)

 a little harder example: 
Let A = {x {0,1}* | x represent a multiple of 3 in binary}. 
◦ notes: leading 0's permitted;   erepresents zero.
◦ example: 
◦ e, 0, 00  ==> 0; 011,11,.. ==>  3;     110  ==> 6;
◦ 1001 ==> 9; 1100,.. ==> 12;   1111 => 15; ...

 Problem:   design a DFA accepting A.       
sol: For each bit string x, s(x) = #(x) mod 3, where #(x) is the 

number represented by x. Note:  s: {0,1}*  {0,1,2}
◦ Ex: s(e) = 0 mod 3 = 0; s(101) = 5 mod 3 = 2;...
◦ ==> A = { x | s(x) = 0 }
◦ 1. s(e) = 0;  
◦ s(x0) and s(x1) can be determined from s(x) as follows:



a little harder example 

 Since #(x0) = 2 #(x) 
==> s(x0) =  #(x0) mod 3  =   2(#(x) mod 3)  mod 3 

=  2s(x) mod 3
==> s(x) can be show as follows:
(note: the DFA M defined by the table
is  also the automata accepting A)
 Exercise: draw the diagram form

of the machine M accepting A.
 Fact: L(M) = A. (i.e., for all bit

string x, x in A iff x is accepted by M)
pf: by induction on |x|. Basis: |x| = 0 => x = e in A and is accepted by M.  

Ind. step: x = yc where c in {0,1}
=> D(0, yc) = d(D(0,y),c) = d(#(y) mod 3, c) 

=  (2#(y) mod 3 +c) mod 3 = #(xc) mod 3.   QED

0 1   
---------------------------------
>0F 0 1

1 2 0
2 1 2   
s(x)  s(x0)    s(x1)



Some closure properties of regular sets

Issue: what languages can be accepted by finite automata ?
 Recall the definitions of some language operations:

◦ A U B = {x | x  A or x  B}.
◦ A B = {x | x  A /\ x  B}
◦ ~A = S* - A = {x  S* | x  A}
◦ AB = {xy | x  A /\ y  B}
◦ A* = {x1 x2 ...xn | n  0 /\ xi  A for  0  i  n}
◦ and more ... ex: A / B = {x | $y  B s.t. xy  A }.

 Problem: If A and B are regular [languages], then which 
of the above sets are regular as well?

Ans: ______.



The product construction

 M1 = (Q1,S,d1,s1,F1),  M2 = (Q2,S,d2,s2,F2) : two DFAs 
Define a new machine M3 = (Q3, S, d3, s3, F3) where

◦ Q3 = Q1 x Q2 = {(q1,q2) | q1  Q1 and q2  Q2 }
◦ s3 = (s1,s2); 
◦ F3=F1xF2 = {(q1,q2) | q1  F1 /\ q2  F2} and
◦ d3:Q3 x S --> Q3 is defined to be

d3( (q1,q2), a) = (d1 (q1,a), d2 (q2,a)) 
for all (q1,q2)Q, a  S. 

 The machine M3, denoted M1xM2, is called the product of M1 and 
M2. The behavior of M3 may be viewed as the parallel execution 
of M1 and M2.

 Lem 4.1: For all x  S*, D3((p,q),x) = (D1(p,x), D2(q,x)). 
Pf: By induction on the length |x| of x.
Basis: |x|= 0: then D3((p,q),e) = (p,q) = (D1 (p,e), D2(q,e))



The product construction (cont'd)

Ind. step: assume the lemma hold for x in S*, we show it holds for 
xa, where a in S.
D3((p,q),xa) = d3( D3((p,q),x), a)   --- definition of D3

= d3((D1(p,x), D2 (q,x)), a)     --- Ind. hyp.
= (d1(D1(p,x),a), d2(D2 (q,x),a)  --- def. of d3

= (D1(p,xa), D2(p,xa))   QED --- def of D1 and D2. 

Theorem 4.2:  L(M3) = L(M1) L(M2).
pf: for all x  S*, x  L(M3) 

iff  D3(s3,x)  F3 --- def. of acceptance
iff  D3((s1,s2),x)  F3 --- def. of s3

iff  (D1(s1,x), D2(s2,x))  F3 = F1xF2   --- def. of F3

iff  D1(s1,x)  F1 and D2(s2,x)  F2 --- def. of set product
iff  x  L(M1) and x  L(M2)               --- def. of acceptance
iff x  L(M1) L(M2). QED --- def. of intersection.



Regular languages are closed under U,  and ~

Theorem: IF A and B are regular than so are AB, ~A and AUB.
pf: (1) A and B are regular

=> $DFA M1 and M2 s.t. L(M1) = A and L(M2) = B -- def. of RL
=> L(M1xM2) = L(M1) L(M2) = A B  --- Theorem 4.2
==> A  B is regular.      -- def. of RL.

(2) Let M = (Q,S,d,s,F) be the machine s.t. L(M) = A.
Define M' = (Q,S,d,s,F') where F' = ~F = {q  Q | q  F}.
Now for all x in S*,  x  L(M')
<=> D(s,x)  F' = ~F    --- def. of acceptance
<=> D(s,x)  F --- def of ~F
<=> x  L(M) iff x  A.  -- def. of acceptance

Hence ~A is accepted by L(M') and is regular !
(3). Note that AUB = ~(~A ~B). Hence the fact that A and B are regular 

implies  ~A, ~B, (~A ~B) and ~(~A ~B) = AUB are regular too. 


